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Abstract In this paper the convergence pattern of correlation-
consistent (cc-pVxZ) and polarized-consistent (PC-n)
hierarchies relative to the complete basis set limit have been
considered in a small set of diatomic molecules. Using the se-
quence of these basis sets it was demonstrated that potential
energy surfaces derived from basis-set-dependent solution
of the Hartree–Fock equations achieves the exact numeri-
cal derived potential energy surfaces (PESs) in an ordered
manner. So it was possible to compute the spectroscopic
parameters in the complete basis set limit with considerable
accuracy using the most extended members of both hierar-
chies. On the other hand, for the first time the detailed conver-
gence patterns of total energies in three separate inter-nuclear
distances have been considered in these molecules and it
was demonstrated that the total energies arrive at microhar-
tree accuracy at a considerable rate. Possible performance of
extrapolation schemes is discussed and it was demonstrated
that reliable extrapolation procedures indeed exist. A suc-
cessful test of the proposed extrapolation method, using the
three most extended members of polarized-consistent basis
sets, has been accomplished on selected polyatomic mole-
cules.

Keywords Hartree–Fock method · Correlation-consistent ·
Polarized-consistent · Complete basis set limit · Extrapola-
tion schemes

Introduction

In recent years, modern electronic structure theory has
achieved great advances in precise, quantitative description
of molecular systems. Thanks to this progress, it is now
possible, using sophisticated methods like CCSD(T), to solve
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the Schrödinger equation for real-life molecules with reason-
able accuracy [1]. In contrast to these developments, even
now reaching exact solutions is a formidable task due to the
incompleteness of basis sets that are used to solve the alge-
braic equations and which are employed in the vast major-
ity of current computer codes due to their algorithmic sim-
plicity. Knowing the fact that direct numerical solution of
approximate equations like coupled cluster equations could
not achieve the same popularity in near future, it is necessary
to develop strategies to estimate the complete basis set limit
of a particular property like total energy using a hierarchy of
finite basis sets. After construction of correlation-consistent
basis sets by Dunning [2], the first evidence was introduced
for a practical scheme to reach this goal. Since then, a decade
of practice to estimate the complete basis set limit of different
correlated methods using this hierarchy by different research
groups has shown correlation-consistent basis sets to be the
best candidate for this propose, at least for post-Hartree–Fock
methods [3–7]. In contrast to the reliability of this sequence
of basis sets to estimate the correlation energy of molecular
systems, less attention has been devoted to the Hartree–Fock
energies. This does not seem surprising due to the known
intrinsic difference between patterns for reaching the com-
plete basis set limit by HF and post-HF methods [8]. It is
evident that, to have good precision in estimating the com-
plete basis set limit of a particular property like energy, it is
necessary to reach both the HF as well as the correlated basis
set limit with the same accuracy.

In pursuit of such a goal, in 1999 a systematic study of
the HF limit of the total and relative energies for some dia-
tomic molecules, comparing numerical solutions with those
derived from correlation consistent basis sets, appeared [9].
Using different extrapolation procedures to estimate the com-
plete basis set limit, the authors came to the conclusion that
“there is no general reliable scheme to extrapolate complete
basis set limit”. So according to their final judgment, direct
computation by utilizing the largest basis set available was
proposed as the only safe method to estimate the complete
basis sets limit with reasonable accuracy (at least sub-milli-
hartree).
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In this paper we have reexamined the complete basis
set limit of the HF method using correlation-consistent ba-
sis sets and also newly developed polarized-consistent basis
sets [10–12], comparing with refined numerical solutions of
the Hartree–Fock equations.

Computational details and selected species

Main computational procedure

To arrive at a reliable estimate of quality of basis sets used to
attain the complete basis set limit, precise basis-set-free cal-
culated values of the property under consideration are needed.
So accurate numerical solution of the HF equations are in-
voked for such comparison.

Although first attempts at numerical solution of the HF
equations goes back to the late 1970s and early 1980s [13,
14], real progress was achieved later in the 1980s [15–18],
although the quality of solution was not clear at that time.
As we will present in this paper, part of the disappointment
arising in this previous investigation [9], comes from a cer-
tain ambiguity. To have reliable numerical values for prop-
erties considered in this investigation, all desired properties
have been recalculated using newly developed code by Kobus
[19–22]. The precision of this code has been tested elsewhere
[19,23], thus giving us confidence in its reliability. The differ-
ences from previous literature are discussed in the subsequent
section.

The correlation-consistent basis sets [2], and newly devel-
oped polarized-consistent basis sets [10–12] have been used
for algebraic solution. A newly developed code [24], has
been used for basis-set-dependent calculations and the results
have been checked with Gaussian and Gamess-US ab initio
codes as standard for assurance. To compute the first and
second derivatives of energy with respect to nuclear coordi-
nates, Peterson’s code for Dunham analysis [25,26] has been
used. The equilibrium distance of inter-nuclear separations,
harmonic vibrational frequencies, vibrational anharmonici-
ty factors and vibrational-rotational coupling constants have
been offered as partial outcome of Dunham analysis through-
out this paper. Comparison of calculated bond length and
vibrational frequencies with standard ab initio codes noted
above, gives us confidence in the reliability of Peterson’s
code.

Selecting the molecular set

A large set of diatomic molecules has been used for numerical
HF calculations. We have selected six of them as prototypes,
namely: H2, C2, N2, CO, FH and F2. These molecules may
be regarded as a subset of the molecular set used in previous
investigations [9]. Although we have done same calculations
on the remaining members of that set as well as some diatomic
molecules not considered by others, due to large amount of
data we have hesitated in discussing them here. There are
also two additional points that are worth mentioning. First,

in contrast to neutral species, cationic and anionic species are
biased with the kind of basis set used for algebraic calcula-
tion. The cations, due to their contracted wave functions, are
usually better described using basis sets designed for neutral
species, whereas anionic wave functions, due to their spatial
extension, need to be augmented with diffuse functions to
gain reliable results. So, the choice of mix of neutral, pos-
itively and negatively charged species could be misleading.
Other members omitted in this paper are those for which no
polarized-consistent basis sets exist in the coarse of preparing
this paper and particularly, those molecules containing ele-
ments from the third and higher rows of the periodic table.
So in this primary report, we have confined ourselves to the
six molecules mentioned above. A more complete set of mol-
ecules is under consideration and the results will be offered
in future, although many of the main results described in this
paper also seem to be true for that extended set.

Results and discussion

Numerical HF calculations

As mentioned above, in last two decades, different numerical
HF calculations have appeared in literature. They have been
mainly used to calibrate and evaluate basis-set-dependent re-
sults. It seems there is a tendency to believe that numerical
results are always superior to basis-set-dependent solutions.
Although this is true as an ideal case, but it must be born
in mind that, like basis set truncation error, there are “grid
truncation” and “practical infinity truncation” errors in “finite
difference” numerical solutions [23] of Hartree–Fock equa-
tions and without checking or estimating these errors, it is
possible that results can be completely illusory. This is par-
ticularly important and problematic when older literature is
used to derive numerical data. So, we have redone the en-
tire numerical calculations using newly developed code de-
scribed previously to test the quality of the older calculations.

To be sure about the effect of grid selection on the preci-
sion of the final results, two different grids have been used for
calculations whereas the practical infinity has been estimated
from previous experience. As has been discussed elsewhere
[21,23], the Hartree–Fock wavefunction in diatomic mole-
cules could be described in prolate spheroidal coordinates.
So, the two grid parameters offer the numerical partition-
ing of the two independent variables (leaving the azimuthal
angle as the third variable) in this coordinate system. Also,
the practical infinity has been used as the asymptotic limit
of boundary condition. First, a 115×115 grid has been used.
Then a tighter 16×193 grid has been utilized for final cal-
culations. Previous experience demonstrated the reliability
of a 169×193 grid for many diatomic molecules containing
first row elements [23]. In all cases, after the establishment
of the equilibrium inter-nuclear distance (Re), belonging to
the minimum of the potential energy surface (with at least
±0.0001 Bohr precision), a complete scan of potential en-
ergy surface (PES) has been done from (Re−0.3) to (Re+0.7)
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Table 1 Potential energy surface (PES) derived properties from Dunham analysis using numerical HF method

Molecule Grida Ee(hartrees) De(kcal.mol−1)b Re(Bohr) ωe(cm−1) ωexe(cm−1) αe(cm−1)

H2 169*193;35 −1.133667 83.88 1.3862 4,583.11 108.05 2.71053
C2 169*193;40 −75.406685 18.48 2.3408 1,905.04 12.46 0.01693
CO 169*193;25 −112.792703 184.92 2.0821 2,426.78 11.27 0.01510
N2 169*193;40 −108.996600 122.20 2.0133 2,730.45 10.90 0.01372
FH 169*193;40 −100.071294 101.59 1.6951 4,473.80 84.93 0.74869
F2 169*193;40 −198.779813 −24.40 2.5063 1,267.43 6.58 0.00812

a (Grid size; practical infinity)
b Dissociation energies have been calculated using atomic HF total energies from reference [29]

with a step size of 0.05 Bohr. So, 21 points have been cal-
culated in each case. These points have been subsequently
utilized for a Dunham analysis. The performance of this
step size and boundary selections, has been demonstrated
elsewhere [27].

Table 1 offers the final results gained form potential en-
ergy surface (PES) analysis. Only the values generated with
169×193 grid has been shown in this table. A detailed analy-
sis of the PES generated with the two grids mentioned above
reveals interesting patterns. For the molecules H2, C2, N2
and CO using these two grids the mean energy differences
in the whole PES are always smaller than one microhartree,
whereas the maximum difference does not exceed ∼ 1.5 mi-
crohartree. Consequently, for practical proposes, the final re-
sults must be regarded as accurate (standard chemical accu-
racy). On the other hand, for the FH molecule the maximum
differences reaches ∼ 3.1 microhartree, although this also
seems acceptable, but for F2 the maximum difference goes
to ∼ 48.9 microhartree, giving serious doubt about the reli-
ability of the final results. It is interesting to note that F2 has
been mentioned as a special case in previous investigation
[9].

For a comparison, Table 2 offers the total energy values
derived from previous calculations cited in the literature and
those from the present study. As may be seen from this table,
there is a good agreement between values in literature and
those derived from our calculations except for FH and F2.
In the case of the FH molecule, the only cited value comes
form the mid 1980s work of Pyykkö et al. [16]. Due to the
lower precision of the computed total energies of that paper
for N2 and CO molecules relative to more recent calculations,
and because of better agreement of our results with the more
recent calculations, we have preferred values derived from
our calculations for the FH molecule. It is worth mention-
ing that properties calculated for the FH molecule show a
good agreement with numerical values of spectroscopic con-
stants offered by Styszynski in his calculations on the FH
molecule [28], although we did not have access to his total
energies for direct comparison. On the other hand, in the
case on the F2 molecule, the problem originates from “grid
truncation” error. As Table 2 offers, calculations using tighter
grids change the situation dramatically. So, problems with the
F2 molecule in the previous study come from their underes-
timated total energy. Due to the demanding grids used by

Table 2 Comparison of total energies (in hartrees) derived from numer-
ical HF solutions in this study and those cited in the literature

Molecule R (Bohr) Grid Total energy Reference

H2 1.4 169*193;30 −1.13362957135 19
1.4 319*595;65 −1.1336295715 38
1.4 169*193;35 −1.1336295 Present

work
C2 2.358 ? −75.406565 9

2.358 169*193;40 −75.406565 Present
work

CO 2.132 81*161;? −112.79095 16
2.132 169*193;25 −122.7909073 39
2.132 169*193;40 −122.790907 40
2.132 169*193;25 −122.7909072 41
2.132 169*193;25 −122.790906 19
2.132 169*193;25 −122.790907 Present

work
N2 2.068 81*161;? −108.99381 16

2.068 229*229;25 −108.9938257 19
2.068 169*193;40 −108.9938256 40
2.068 793*793,40 −108.993825622 42
2.068 169*193;40 −108.9938257 Present

work
FH 1.7328 81*161;? −100.07082 16

1.7328 169*193;40 −100.070757 Present
work

1.7328 199*199;40 −100.0707578 Present
work

F2 2.668 ? −198.773323 9
2.668 169*193;40 −198.773310 J. Kobus∗
2.668 247*439;160 −198.773443 J. Kobus∗
2.668 247*439;160 −198.773443 11
2.668 169*193;40 −198.773310 Present

work
2.668 199*199;40 −198.773311 Present

work

∗ Private communication

Kobus for high-precision computations on the F2 molecule,
it was impossible for us to do a complete scan with that grid
on F2’s PES, so we have used an “additive approximation”
to modify values due to grid truncation. These modified val-
ues have been used in checking the basis set extrapolated
values.

As a final conclusion, it seems that in the case of the
FH and F2 molecules, the total energies used in the previ-
ous investigation [9] as exact numerical values are not the
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Table 3 Calculated parameters from Dunham analysis of correlation-consistent-based PESs

Molecule Basis set Ee De Re ωe ωexe αe

cc-pVDZ −1.128746 81.69 1.4134 4,583.9 105.59 2.55167
cc-pVTZ −1.132990 83.69 1.3879 4,587.4 108.56 2.73618

H2 cc-pVQZ −1.133496 83.84 1.3866 4,582.0 107.52 2.69613
cc-pV5Z −1.133645 83.87 1.3862 4,583.3 108.02 2.70878
cc-pV6Z −1.133663 83.88 1.3862 4,583.3 108.05 2.71014
cc-pVDZ −75.387049 13.97 2.3666 1,914.3 12.45 0.01635
cc-pVTZ −75.401450 17.65 2.3449 1,904.6 12.27 0.01684

C2 cc-pVQZ −75.405784 18.40 2.3412 1,905.1 12.34 0.01690
cc-pV5Z −75.406545 18.45 2.3408 1,904.9 12.39 0.01692
cc-pV6Z −75.406659 18.47 2.3408 1,905.0 12.37 0.01692
cc-pVDZ −112.750151 176.69 2.0979 2,431.6 10.91 0.01467
cc-pVTZ −112.781813 183.28 2.0871 2,425.0 11.06 0.01488

CO cc-pVQZ −112.790626 184.75 2.0825 2,427.3 11.27 0.01507
cc-pV5Z −112.792412 184.85 2.0821 2,426.9 11.32 0.01510
cc-pV6Z −112.792649 184.90 2.0821 2,426.8 11.28 0.01510
cc-pVDZ −108.955559 112.15 2.0358 2,758.3 11.20 0.01342
cc-pVTZ −108.986557 120.38 2.0165 2,731.7 10.72 0.01361

N2 cc-pVQZ −108.994470 121.81 2.0137 2,729.7 10.82 0.01370
cc-pV5Z −108.996188 122.04 2.0133 2,730.3 10.86 0.01371
cc-pV6Z −108.996515 122.16 2.0133 2,730.4 10.87 0.01372
cc-pVDZ −100.019707 93.72 1.7036 4,440.8 86.78 0.76438
cc-pVTZ −100.058462 100.06 1.6969 4,481.8 84.67 0.74157

FH cc-pVQZ −100.068185 101.19 1.6949 4,477.2 84.06 0.74828
cc-pV5Z −100.070926 101.53 1.6950 4,475.1 85.38 0.74855
cc-pV6Z −100.071233 101.60 1.6951 4,474.1 85.08 0.74877
cc-pVDZ −198.688936 −33.40 2.5467 1,180.1 5.60 0.00800
cc-pVTZ −198.758042 −25.32 2.5117 1,266.8 6.71 0.00803

F2 cc-pVQZ −198.774463 −24.78 2.5086 1,263.8 6.50 0.00812
cc-pV5Z −198.779058 −24.60 2.5070 1,265.9 6.65 0.00812
cc-pV6Z −198.779645 −24.47 2.5066 1,266.6 6.55 0.00812

Total energies and bond distances are in atomic units, dissociation energies in kcal.mol−1 and other quantities in cm−1

best choices. Now we are in a position to compare numer-
ical values of total energies with those, which come form
basis-set-dependent algebraic solutions.

Basis-set-dependent algebraic HF calculations

Both correlation-consistent and polarized-consistent basis sets
have been used for construction of potential energy surfaces
of molecules mentioned previously. The same initial, final
and step size have been used to scan PESs as described in
the previous section. Tables 3 and 4 contain the final results
of Dunham analysis on PESs. A brief look at these tables
offers some general trends. In most cases enlargement of the
basis set causes the increase of dissociation energies as well
as contraction of bond lengths. Aside from the F2 molecule,
in all other cases the bond lengths computed at cc-pV6Z
and PC-4 completely coincide with those calculated with the
numerical solution. The slight difference in the case of the
F2 molecule is in accord with the grid convergence problem
discussed previously. On the other hand, there are less clear
systematic trends in the case of spectroscopic constants. The
computed properties utilizing the first member in both hier-
archies, namely cc-pVDZ and PC-0, show a vast difference
with the values calculated using other members of their fam-
ily. So these two small basis sets seem unreliable relative to
their more extended counterparts. The PC-0 basis set does

not contain polarized functions so its erratic behavior does
not seem strange. Therefore, this set has been excluded from
further investigations in this paper.

A comparison with Table 1 confirms that for all mol-
ecules, except for the total energies that will be discussed
in next section, all properties calculated from PES Dunham
analysis show a nice convergence using both hierarchies.
Particularly, the rate of convergence of spectroscopic prop-
erties is quite remarkable. For any practical purposes, the
spectroscopic constants derived using PESs computed with
cc-pVQZ and PC-2 basis sets could be viewed as the com-
plete basis set limit. Moreover, there are cases for which the
results originating from PESs constructed from the cc-pVTZ
basis set could be viewed as reliable. The same trends also
seem to hold for the dissociation energies. It is important
to realize that such a fast convergence does not necessar-
ily reveal the total energy convergence pattern. A balanced
basis set with a truncation error, which is relatively indepen-
dent of inter-nuclear distance, could produce an accurate PES
nearly parallel with the exact PES computed in the complete
basis set limit. On the other hand, it is evident from basis-set-
dependent calculations that the basis set superposition error
(BSSE) [30] completely diminished using extended basis sets
and there is no serious need for any modification of the PES
using methods like the counterpoise procedure [31].

So both correlation-consistent and polarized-consistent
basis sets show a similar convergence pattern for spectro-



156 S. Shahbazian and M. Zahedi

Table 4 Calculated parameters from Dunham analysis of polarized-consistent-based PESs

Molecule Basis set Ee De Re ωe ωexe αe

PC-0 −1.120671 80.30 1.3989 4,614.5 107.95 2.73423
PC-1 −1.130291 83.53 1.3997 4,640.1 108.34 2.64134

H2 PC-2 −1.133238 83.76 1.3880 4,589.2 107.74 2.70340
PC-3 −1.133650 83.87 1.3863 4,583.5 108.10 2.70942
PC-4 −1.133665 83.88 1.3862 4,583.1 108.05 2.71053
PC-0 −75.158103 1.62 2.4323 1,702.7 10.29 0.01587
PC-1 −75.358568 15.11 2.3486 1,932.1 12.79 0.01675

C2 PC-2 −75.400652 18.72 2.3404 1,907.9 12.39 0.01702
PC-3 −75.405742 18.48 2.3406 1,906.2 12.36 0.01692
PC-4 −75.406610 18.38 2.3408 1,905.1 12.34 0.01693
PC-0 −112.333871 131.57 2.1770 2,128.3 8.96 0.01426
PC-1 −112.712424 178.73 2.0935 2,447.9 11.37 0.01499

CO PC-2 −112.783296 182.77 2.0830 2,426.4 11.18 0.01515
PC-3 −112.791669 183.11 2.0821 2,427.9 11.32 0.01508
PC-4 −112.792617 182.99 2.0821 2,426.8 11.29 0.01511
PC-0 −108.508147 35.86 2.1284 2,312.7 9.47 0.01341
PC-1 −108.915315 113.35 2.0276 2,761.2 11.63 0.01380

N2 PC-2 −108.987260 121.54 2.0137 2,732.1 10.83 0.01382
PC-3 −108.995599 122.23 2.0132 2,731.2 10.88 0.01371
PC-4 −108.996524 122.19 2.0133 2,730.5 10.89 0.01372
PC-0 −99.670078 88.59 1.7557 4,287.9 73.85 0.65588
PC-1 −99.989216 96.04 1.7117 4,451.5 93.00 0.75736

FH PC–2 −100.063578 100.16 1.6946 4,474.2 86.98 0.76926
PC-3 −100.070673 100.37 1.6951 4,474.9 84.61 0.74854
PC-4 −100.071239 100.33 1.6951 4,473.9 85.45 0.74851
PC-0 −198.032516 −20.44 2.6613 1,305.7 4.97 0.00537
PC-1 −198.618064 −35.82 2.5634 1,176.3 5.32 0.00744

Fa
2 PC-2 −198.763665 −27.93 2.5141 1,258.6 6.56 0.00801

PC-3 −198.778343 −27.05 2.5065 1,267.1 6.54 0.00811
PC-4 −198.779670 −27.00 2.5065 1,267.3 6.68 0.00812

Total energies and bond distances are in atomic units, dissociation energies in kcal.mol−1 and other quantities in cm−1

a There is almost 2.5 kcal.mol−1 difference between De values derived from PC-4 and those from numerical HF and cc-pV6Z calculations. This
difference comes from atomic HF calculations that do not use degenerate atomic orbitals (px , py , pz) of fluorine atom. The same problem can be
observed elsewhere (see [43])

scopic constants as well as dissociation energies. Regarding
the larger number of basis functions used in each of correla-
tion consistent basis sets, to reach the same accuracy relative
to their PC counterparts, it seems that using polarized con-
sistent basis sets are more economic to gain a reliable PES.

Convergence pattern of total energies in basis-set-dependent
solutions

As discussed in previous section, both cc-pVxZ and PC-n
hierarchies seem to reach the complete basis set limit of spec-
troscopic constants derived from Dunham analysis with rea-
sonable accuracy.Although this is promising, it is evident that
in diatomic molecules constructed by elements from higher
rows of the periodic table as well as polyatomic molecules,
the same accuracy could not be achieved by direct calculation
and an extrapolation scheme is desirable to reach the com-
plete basis set limit for total energies. On the other hand, no
one has yet done a systematic study on the performance of
extrapolation schemes relative to different inter-nuclear dis-
tances. It is evident that any attempt to survey the PES around
the equilibrium geometry demands an extrapolation scheme

insensitive to slight geometrical changes. An attempt will
be done in this section to pursue the convergence pattern of
basis-set-dependent solutions. The extrapolation and related
material will be discussed in hte next section.

Although in a previous study [9], both total and dissocia-
tion energies have been used to seek a reliable extrapolation
scheme, we hesitate before using dissociation energies in our
analysis. As has been discussed in a previous study [9], there
is no need for high angular basis functions for a complete
description of HF wavefunctions for atoms, whereas for mol-
ecules such polarized basis functions are certainly mandatory
for a proper description. So, there is no reason to believe
that the same dependency of total HF energy and maximum
angular momentum of proper basis set used persist for both
atoms and corresponding molecules. On the other hand, for
atoms the HF total energies have been calculated precisely
and tabulated [29] so, after extrapolating the total energies of
diatomic molecules, it is possible to reach the complete basis
set limit of dissociation energies using these tabulated data. It
is important to note that in polyatomic molecules the dissoci-
ation process usually produces smaller molecular fragments,
and consequently in those cases the extrapolation could be
done both for the main molecule and for its fragments to
estimate the exact dissociation energy at Hartree–Fock level.
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Table 5 Total energy differences of basis-set-dependent calculations with numerical solution at three different inter-nuclear distances

Molecule Basis set Re−0.3 Re Re+0.7 Basis
set

Re−0.3 Re Re+0.7

cc-pVDZ 10,827 5,074 2,299 PC-1 6,982 3,414 3,085
cc-pVTZ 1,109 678 538 PC-2 883 430 377

H2 cc-pVQZ 221 172 146 PC-3 26 17 24
cc-pV5Z 26 22 30 PC-4 2 2 3
cc-pV6Z 4 4 11
Numerical −1.107687 −1.133667 −1.082686 −1.107687 −1.133667 −1.082686
cc-pVDZ 31,428 19,920 15,760 PC-1 53,064 48,143 48,249
cc-pVTZ 6,950 5,242 4,499 PC-2 6,139 6,033 6,338

C2 cc-pVQZ 1,069 901 904 PC-3 919 943 1100
cc-pV5Z 165 140 126 PC-4 78 75 84
cc-pV6Z 35 26 24
Numerical −75.354434 −75.406685 −75.308816 −75.354434 −75.406685 −75.308816
cc-pVDZ 56,298 42,747 38,819 PC-1 92,185 80,382 78,480
cc-pVTZ 14,677 10,910 9,757 PC-2 10,334 9,408 9,172

CO cc-pVQZ 2,443 2,077 2,197 PC-3 1,109 1,034 1,155
cc-pV5Z 361 291 295 PC-4 100 86 86
cc-pV6Z 77 54 53
Numerical −112.6922534 −122.792703 −112.615022 −112.692253 −122.792703 −112.615022
cc-pVDZ 69,000 41,566 33,909 PC-1 10,0576 81,494 76,217
cc-pVTZ 13,598 10,053 9,038 PC-2 10,282 9,340 9,201

N2 cc-pVQZ 2,470 2,130 2,056 PC-3 1,065 1,001 1,122
cc-pV5Z 460 412 383 PC-4 91 76 81
cc-pV6Z 96 85 93
Numerical −108.8671449 −108.996600 −108.7653578 −108.8671449 −108.996600 −108.7653578
cc-pVDZ 54,560 51,613 48,763 PC-1 88,515 82,179 7,7791
cc-pVTZ 13,668 12,833 12,842 PC-2 7,784 7,716 7,500

FH cc-pVQZ 3,127 3,109 3,264 PC-3 644 621 664
cc-pV5Z 357 368 408 PC-4 64 55 56
cc-pV6Z 56 61 74
Numerical −100.0218915 −100.071294 −99.988419 −100.0218915 −100.071294 −99.988419
cc-pVDZ 96,902 91,296 78,595 PC-1 17,2206 16,2602 14,7059
cc-pVTZ 23,150 21,778 20,974 PC-2 17,785 16,164 14,358

F2 cc-pVQZ 5,749 5,351 4,780 PC-3 1,506 1,470 1,453
cc-pV5Z 845 755 521 PC-4 165 143 95
cc-pV6Z 207 168 53
Numerical −198.743389 −198.779813 −198.707934 −198.743389 −198.779813 −198.707934

Energy differences offered in microhartrees and distances in atomic units

Table 5 contains the total energies of numerical solution
and the difference with those derived from basis set depen-
dent solution of Hartree-Fock equations in three inter-nuclear
separations. In the case of the F2 molecule as discussed in
previous sections, the numerical standard grid in this study
is not sufficient for microhartree precision, so an additive
approximation has been used to estimate the numerical Har-
tree–Fock total energy for the three inter-nuclear distances
considered in this paper. Equation (1) offers this estimation
method. According to our previous experiences, it seems to
us that the results gained by this procedure are superior to
those from the standard grid.
E(R)exact = E(R)(169×193) + �E(R)(169×193−115×115)

+�E(R0 = 2.668a0)(247×439−193×169) (1)

In this equation, the second and third terms modify the re-
sult for the dependence of inter-nuclear value on grid quality
and grid truncation errors, respectively. Utilizing both hierar-
chies it is evident that total energies, in contrast to correlation
energy [8], converge with a remarkable rate relative to basis
sets cardinal numbers. Even a brief look at Table 5, reveals
that the addition of new basis functions with higher angular

numbers to each basis set and using the next member in both
hierarchies (with one higher cardinal number), causes the er-
ror to be reduced by almost an order of magnitude. In this
regard, with cc-pV5Z or PC-3, millihartree accuracy could
be reached. On the other hand, in all cases cc-pV6Z and PC-4
yield an ideal accuracy and practically could be regarded as
the complete basis set limit. This is in accord with previous
investigation [9].

Although, as mentioned above, there are many common
features in the convergence pattern of both hierarchies, there
are also subtle differences. By comparison of the similar
members of both hierarchies (1 = DZ, 2 = TZ, 3 = QZ and
4 = 5Z), it is evident that in all cases (except the PC-1 basis
set) the absolute accuracy of the polarized-consistent basis
sets is superior to the correlation-consistent basis set, inde-
pendent of the largest member of the correlation-consistent
hierarchy. A comparable accuracy could be gained only with
the PC-4 and cc-pV6Z basis sets. Due to the smaller size
of PC-4 relative to cc-pV6Z it seems that for direct calcula-
tions the former is superior. So these observations confirm
the higher rate of convergence of polarized-consistent basis
sets, relative to correlation-consistent basis sets.
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As mentioned previously, Table 5 offers the total energy
difference for three separate inter-nuclear distances, namely,
at Re, Re − 0.3 and Re + 0.7. In contrast to our expectation,
we have not found a general trend for the convergence pattern
when changing the inter-nuclear distance. Although in many
cases the contraction of bond length deteriorates the quality
of basis-set-dependent results, there are also exceptions to
this trend. This is particularly true for basis sets with higher
cardinal numbers. It seems plausible that this behavior of the
convergence for different inter-nuclear separations is due to
the dependence of the optimum polarized functions expo-
nents on the internuclear distance. The basis set exponents
are derived as a suitable average for a series of molecules. For
the present cases, the convergence pattern depends on where
the exponent is relative to the optimum value for the specific
system. On the other hand, with the exception of F2, the most
extended basis sets in both hierarchies (PC-4 and cc-pV6Z)
yield absolute errors relatively independent of inter-nuclear
distance. Whether this independence is an exception or a gen-
eral rule remains to be considered in future studies.

Extrapolation to the complete basis set limit

Diatomic molecules

As demonstrated in previous section, it is possible to reach
millihartree and even near microhartree precision easily with
direct computation for the molecular collection under study.
Although the rate of convergence of basis-set-derived total
energies relative to the complete basis set limit are remark-
able, it is evident that in larger systems with more electrons
the same accuracy could not be reached with direct com-
putation. A reliable estimation of Hartree–Fock energies is
even more important for large systems. This is particularly
vital in the case of isodesmic reactions [32], which could
be used for a reliable estimation of thermodynamic quanti-
ties of large polyatomic molecules without considering the
correlation energy contribution directly.

In a previous study, Halkier et al. [9], used different equa-
tions for extrapolation and came to the conclusion that an
exponential form is the best among others (Eq. (2)).

ER(L) = ER(∞) + Ae−BL (2)

In this equation ER(L) is the total energy computed at the
inter-nuclear distance R and L denotes the highest angu-
lar functions of the basis sets used in extrapolation. In cc-
pVxZ hierarchy L ranges from 2 (cc-pVDZ) to 6 (cc-pV6Z),
whereas, in the PC-n hierarchy it ranges from L = 2 (PC-1)
to L = 5 (PC-4). Also, ER(∞) is the total energy in com-
plete basis set limit. The quantities, A and B are empirical
constants without physical significance. Since there are three
unknown quantities in this equation (ER(∞), A and B), at
least three consecutive basis sets are needed for extrapola-
tion. Restricting ourselves to this minimum requirement, we
have used three member groups (L, L + 1, L + 2) in each
hierarchy. In this regard, the correlation-consistent hierarchy
could be extrapolated with {(2, 3, 4), (3, 4, 5) and (4, 5, 6)}

collections whereas, for the polarized-consistent hierarchy
the possible collections are {(2, 3, 4) and (3, 4, 5)}.

Table 6 depicts the final results. Only the total energy
differences between extrapolated and numerical values have
been offered for comparison. Different trends could be de-
duced from this table. It is evident that extrapolations using
collections containing the smallest members of each hier-
archy could not be regarded reliable. This is not surprising
since the absolute errors according to Table 5 decrease an or-
der of magnitude with every unit increase in cardinal number
and so the smallest basis sets in each hierarchy by no means
could be viewed as reliable. In this regard the general valid-
ity of extrapolation schemes appearing in literature using the
smallest basis sets of these hierarchies seems questionable
[33]. So, we hesitate before considering them further.

Although the situation in the case of the (3, 4, 5) collec-
tion for correlation consistentcy is not as worse as the (2,
3, 4) collection containing the cc-pVDZ basis set, the errors
are almost in the same order of magnitude as those for the
cc-pV5Z basis set. The interesting trend is the general over-
estimation of the complete basis set limit of this collection.
The exact total energy is somewhere between the cc-pV5Z
and extrapolated value of the (3, 4, 5) collection. The same
specifications also hold for the extrapolated total energies
from PC-3 and the (2, 3, 4) collection, although in this case
the extrapolated values are slightly better than those corre-
sponding to the correlation-consistent hierarchy. The general
overestimation of extrapolated values also holds for this set.

The situation is reversed while utilizing the (4, 5, 6) col-
lection for extrapolation of correlation-consistent basis sets.
This time the extrapolated values are generally better than cc-
pV6Z. A general underestimation could be traced in extrap-
olated values in contrast to the (3, 4, 5) collection. The same
is true for the (3, 4, 5) collection extrapolated total energies
of the polarized-consistent hierarchy. They are usually bet-
ter than PC-4 but overestimated the complete basis set limit,
although this overestimation is not as much as for the total
energies derived from the (2, 3, 4) collection. In this regard it
seems that for a reasonable extrapolation only the three most
extended basis sets in each hierarchy could be assumed rea-
sonable. Even in these cases, the errors of the most extended
basis set and the extrapolated values are in the same order
of magnitude. This is not surprising since the PC-4 and cc-
pV6Z attain remarkable accuracy in the molecules studied in
this paper.

It is also interesting to consider the A and B values of
Eq. (2) in the fitting procedure. In contrast to what we ex-
pected according to previous study [9], not only a vast differ-
ence has been found among A and B values corresponding to
different molecules and fitting collections, but also regarding
to inter-nuclear distance. This variance is more pronounced
for A than B. So no general predictable pattern seems to exist
for these quantities in fitting the collections studied. We hes-
itate to consider them further in this study. It is important to
note that this observation does not invalidate the “two-point”
extrapolation proposed in previous study [9]. This point will
be discussed further in the next section.
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Table 6 Total energy differences (microhartree) of extrapolated as well as some basis-sets-derived values with numerical HF solutions

Molecule Extrap. type∗ Re−0.3 Re Re+0.7 Extrap. type∗ Re−0.3 Re Re+0.7

(2, 3, 4) 132 106 34 (2, 3, 4) −114 −49 −29
(3, 4, 5) −29 −41 −19 (3, 4, 5) 1 1 2

H2 (4, 5, 6) 1 2 7
cc-pVQZ 221 172 146 PC-2 883 430 377
cc-pV5Z 26 22 30 PC-3 26 17 24
cc-pV6Z 4 4 11 PC-4 2 2 3
(2, 3, 4) −791 −922 −782 (2, 3, 4) 266 243 352
(3, 4, 5) 1 −22 −89 (3, 4, 5) −84 −103 −160

C2 (4, 5, 6) 13 6 9
cc-pVQZ 1,069 901 904 PC-2 6,139 6,033 6,338
cc-pV5Z 165 140 126 PC-3 919 943 1,100
cc-pV6Z 35 26 24 PC-4 78 75 84
(2, 3, 4) −2650 −1315 −461 (2, 3, 4) −63 −86 106
(3, 4, 5) −66 −162 −344 (3, 4, 5) −24 −35 −78

CO (4, 5, 6) 32 18 18
cc-pVQZ 2,443 2,077 2,197 PC-2 10,334 9,408 9,172
cc-pV5Z 361 291 295 PC-3 1,109 1,034 1,155
cc-pV6Z 77 54 53 PC-4 100 86 86
(2, 3, 4) −327 −531 −669 (2, 3, 4) 17 −89 15
(3, 4, 5) 17 −64 −144 (3, 4, 5) −24 −39 −73

N2 (4, 5, 6) 16 8 32
cc-pVQZ 2,470 2,130 2,056 PC-2 10,282 9,340 9,201
cc-pV5Z 460 412 383 PC-3 1,065 1,001 1,122
cc-pV6Z 96 85 93 PC-4 91 76 81
(2, 3, 4) −534 −145 −218 (2, 3, 4) −49 −126 −72
(3, 4, 5) −630 −708 −805 (3, 4, 5) 13 6 −3

FH (4, 5, 6) 19 22 30
cc-pVQZ 3,085 3,064 3,219 PC-2 7,742 7,671 7,455
cc-pV5Z 315 323 363 PC-3 602 576 619
cc-pV6Z 14 16 29 PC-4 22 10 11
(2, 3, 4) 376 268 −1550 (2, 3, 4) −412 −169 63
(3, 4, 5) −1079 −1030 −999 (3, 4, 5) 45 11 −65

F2 (4, 5, 6) 112 82 −5
cc-pVQZ 5,749 5,351 4,780 PC-2 17,785 16,164 14,358
cc-pV5Z 845 755 521 PC-3 1,506 1,470 1,453
cc-pV6Z 207 168 53 PC-4 165 143 95

∗ See text for notation used in this table

Polyatomic molecules

To check the reliability of the extrapolation scheme of the (3,
4, 5) collection using contracted polarized-consistent basis
sets, as the most economic and reliable scheme, two poly-
atomic molecules, namely H2O and CO2, have been inves-
tigated. Unfortunately in contrast to diatomic molecules no
general numerical Hartree–Fock method exists for polyatomic
molecules so, in the latter case, very large basis sets calcula-
tions could be used as exact values. In this regard the “distrib-
uted universal even-tempered” basis sets (DUET) seems to
be the best candidate (for a recent review see [34]). A decade
of development and detailed comparison with numerical re-
sults on diatomic molecules [34], makes us confident about
DUET’s reliability for polyatomic molecules. Particularly
for the two molecules mentioned above, there are reliable
estimates of total Hartree–Fock energy in their experimental
geometry (see [35] for H2O and [36] for CO2).

Table 7 contains the total energies calculated using the
PC-2, PC-3 and PC-4 basis sets as well as extrapolated val-
ues using the (3, 4, 5) collection. Like the diatomic molecules

considered previously in this paper, a considerable improve-
ment could be achieved by going to more extended basis sets
of this hierarchy. On the other hand, the extrapolated total
energies reveal the same slight overestimation for these two
cases as could be observed for the diatomic molecules con-
sidered in Table 6. But what is more important is the quality
of the extrapolated total energies. In both cases, the extrap-
olated total energies are considerably better than the total
energies derived from the PC-4 basis set.

So, it seems that the extrapolation procedure used is at
least as successful in the case of polyatomic molecules as for
the diatomic molecules considered herein.

Final conclusion and future prospects

A relatively complete survey of basis set convergence pattern
on a small subset of molecules has been carried out in this
paper. Our computations on both numerical and basis-set-
dependent Hartree–Fock methods demonstrate that there are
very general trends in the basis set convergence pattern. In
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Table 7 Total as well as difference energies of water and carbon dioxide
using PC basis sets and extrapolated values relative to exact values

Molecule Basis set Total energy∗ Difference∗

PC-2 −76.061108 6,380
PC-3 −76.066894 594

H2O∗∗∗ PC-4 −76.067434 54
(3, 4, 5) −76.067490 −2
exact∗∗ −76.067488 –
PC-2 −187.710281 15,127
PC-3 −187.723900 1,508

CO∗∗∗
2 PC-4 −187.725286 122

(3, 4, 5) −187.725443 −35
exact∗∗ −187.725408 –

∗ Total energies offered in hartree with energy differences in microhar-
tree
∗∗ See references [35] for water and [36] for carbon dioxide.
∗∗∗ The geometries: H2O (RO–H= 1.80885 Bohr, � H-O-H= 104.52◦)
and linear CO2 (RC–O = 1.160 Angstroms)

particular, it seems that the polarized-consistent hierarchy
is a reliable and economic set to reach the complete basis
set limit of the PES derived spectroscopic constants as well
as total energies with a considerable convergence rate. This
is promising since the correlation energy estimation needs
more extended basis sets and computationally demanding
methods.

On the other hand, thanks to current hardware technology
and high performance computer codes, in the case of small
molecules it is possible to use direct computation as the best
method to reach the complete basis set limit with microhar-
tree accuracy, but in the case of larger systems an extrapola-
tion scheme seems mandatory. The simple exponential-type
functions like Eq. (2) work relatively well, but it seems that in
the case of the polarized-consistent hierarchy a general slight
overestimation exists. So possible modification of Eq. (2)
opens the door for a better estimation of the complete basis
set limit. Although any complication of this extrapolation
equation may increase the number of fitting parameters and
so make it mandatory to use basis sets with lower cardi-
nal numbers (and consequently a lower precision), using a
“two-point” exponential equation (with a fixed B value) [9]
with a “modification term” could possibly help the better
estimation of the complete basis set limit. Such a modifi-
cation is one of the main topics in our future research pro-
gram.

Among the problems left to be considered, knowing the
fact that density-functional-based methods behave like the
Hartree–Fock method in their basis set convergence pattern
[10–12,37], polarized-consistent basis sets and the extrapo-
lation scheme described in this paper could also be tested for
them. These issues will be discussed in a separate paper.
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